
Abstract- We evaluate a combined discrete wavelet
transform (DWT) and wavelet packet algorithm to
improve the homogeneity of magnetic resonance imaging
when a surface coil is used for reception. The proposed
algorithm estimates the spatial sensitivity profile of the
surface coil from the original anatomical image and uses
this information to normalize the image intensity
variations. Estimation of the coil sensitivity profile based
on the wavelet transform of the original image data is
found to provide a robust method for removing the slowly
varying spatial sensitivity pattern.
Keywords - MRI, wavelet packet, discrete wavelet transform,
surface coil

I. INTRODUCTION

Surface coils offer the potential for a 2 to 5 fold increase
in sensitivity compared to volume coils. Despite of this
signal-to-noise advantage, surface coils are not used regularly
for many applications because of their small region of
coverage and their intrinsically inhomogeneous reception
profile. The limited coverage of a single small surface coil
can be extended by using a phased array of multiple coils [1].
The phased array technique also improves the homogeneity
of the images in the plane of the array, but the image intensity
is still significantly brighter near the coils than deeper in the
brain. Thus, the surface coil detector has an inherently
inhomogeneous reception profile that leads to a variation in
intensity across the image. This significantly degrades the
utility of the images for evaluation of pathology in the cortex.

To correct the inhomogeneity of the surface coil MRI due
to the modulation of coil reception sensitivity profiles,
several approaches have been studied to estimate the coil
profile, which is used to correct the measured inhomogeneous
MRI [1-12]. These methods use either a theoretically
generated model [1, 3, 13] of the coil or the information in
the image itself [2, 4, 6-8] to generate the expected coil
sensitivity map. In the first case, knowledge of the location
and orientation of each surface coil is required in addition to
a B1 field map generated from the coil geometry. In the
second case, the coil intensity profile can be approximated by
a low-pass filtered version of the original image. The low
pass filter based approximation of the surface coil profile
requires a priori knowledge of the anatomy and coil fall-off
in order to determine the appropriate cut-off spatial frequency
which separates the low frequency variations due to coil fall
off from the higher spatial frequency variations due to the
anatomy.

Here we propose a solution to correcting surface coil
image intensity variations using post-hoc processing of the
original surface coil image. The method identifies edges in
the image and uses this information to improve the estimation
of the coil sensitivity map. The slowly varying intensity

changes comprising the estimated coil sensitivity map are
determined from a filter bank implementation. This method
allows the comparison of multiple levels of spatial filtering.
The optimum level of filtering is determined by an automated
analysis of the spatial variance in the corrected images. The
coil map estimation also includes an iterative maximum
projection method to improve the approximation of the coil
sensitivity profile near the edge of the head. We also use a
wavelet packet analysis to improve the spatial frequency
resolution when estimating the coil sensitivity profile. To
have a better visualization of correct images without
enhancing the background noise, users can fine-tune the
reconstruction depending on the scanner SNR and imaging
anatomy.

II. METHODOLOGY

The images from a surface coil can be viewed as the
product of the true anatomical image and a function
representing the spatial modulation imposed on the image by
the surface coil reception profile. Thus, the true homogeneous
image, ][nC

v
, is modulated by the coil sensitivity, ][nS

v
, to

generate the observed inhomogeneous image, ][nY
v

, where

n
v

is the position vector in 3D space. Thus our goal is to get

an estimate, ][nS
v) , of the true coil sensitivity profile, ][nS

v
.

The corrected reconstruction image, ][nC
v) , which represents

an approximation of the true anatomical image is then
expressed in terms of the ratio of the original data ][nY

v
and

the estimated coil sensitivity profile.
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Estimation of coil sensitivity profile using discrete
wavelet transform (DWT) has been reported in our previous
publication [14] Figure (1) illustrates the algorithm. The
advantage of this proposed algorithm is the automatic
multiple-level coil sensitivity profile estimation adapted to
different imaging protocols, since no prior knowledge about
the coil position, orientation, and geometry is assumed in the
algorithm. Also, we applied an iterative maximum projection
on each level of coil sensitivity profile estimation in DWT to
avoid the underestimation of coil sensitivity at the vicinity of
high contrast brain-air boundary.

However, conventional DWT limits the spatial frequency
resolution because only the low-pass bands are iteratively
decomposed. On the other hand, wavelet packet algorithm
can improve the frequency resolution by further decomposing
other subbands. Our previous DWT algorithm can search the
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optimal level of DWT estimation. Therefore we increase the
spatial frequency estimation using wavelet packet between
one level above and one level below the optimal level
determined by the DWT-based estimation. This combined
DWT-wavelet packet approach can thus estimate the coil
sensitivity profile with computational efficiency and with
improved estimation accuracy.

pi/2
pi/4

LH

HL HH

LH

HL HH

Fig. 1 Dyadic DWT decomposes the original signal into subbands. Only
low-pass signals in all dimensions are filtered iteratively for a
computationally efficient estimation of coil sensitivity profile, which is
reconstructed by zeroing out all high-pass subbands above different cut-off
frequencies.

Figure 2 illustrates the details about incorporating wavelet
packet analysis in DWT estimation of the coil sensitivity
profile. Here we assume that level 2, which has an equivalent
cut-off frequency at pi/4, is the given optimal level from the
DWT estimation. To search a possibly better solution than the
one found in DWT, we decompose one level above and
below the optimal level into subbands (between thin dashed
lines) for finer spatial frequency resolution, which is
implemented by wavelet decomposition on both high-pass
and low-pass bands of signal in each dimension. After
zeroing out the high-pass information, spatially slowly
varying coil profiles are reconstructed from the wavelet
packets coefficients (the light gray area), in addition to the
DWT decomposition coefficients (the dark gray area).

Daubechies 9/7 filter banks [15] were used in the
estimation of the coil sensitivity map using wavelet packets.
This filter bank has three vanishing moments to provide
smooth cubic polynomial approximation of the input signal.
Intel Pentium® III processor (Santa Clara, CA) and Matlab
(Natick, MA) were used in implementation environment.

III. RESULTS

Image acquisition
Images were acquired using a General Electric Signa 1.5T

scanner (Milwaukee WI) with a home built four-element
bilateral surface coil array. The array elements consisted of
overlapping 8cm diameter surface coils. The imaging pulse
sequence was either a spoiled gradient echo (SPGR) 3D
volume exam (TR/TE/flip = 40ms/6ms/30o), partition
thickness = 1.5mm, matrix = 256 x 256, 124 partitions, Field

of View = 18cm. The array elements were placed over the
subject’s temporal lobes.
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Fig. 2 Wavelet package analysis on all subbands of images can increase
the spatial frequency resolution when estimating the coil sensitivity profile.
Bold solid lines represent the divisions of frequency analysis in DWT. Given
an optimal level from DWT, wavelet packet decomposition on all subbands
(dashed lines), including both high-pass and low-pass signals, can improve
the coil sensitivity profile estimation. Reconstruction incorporating both
DWT subband (dark gray region) and wavelet packet coefficients (light gray
region) provides finer spatial frequency resolution.

Image inhomogeneity correction
Our previous DWT-based results revealed that for the

input image acquired from the bilateral phased array with
image matrix of 256 X 256 pixels, level 5 gives the optimal
estimation of the coil sensitivity profile in terms of the most
homogeneous reconstructed image. This DWT estimation of
coil sensitivity profiles and the associated corrected images
are shown in Figure 3.

Given level 5 being the optimal level of reconstruction
from DWT, we decomposed the images between level 4 and
level 6 using Daub 9/7 filter bank for finer spatial resolution.
2 levels of wavelet packets were performed between level 5
and level 6 to generate 4 frequency bands between pi/16 and
pi/32. Additionally 3 levels of wavelet packets were
performed between level 4 and level 5 to generate 8 equal
bandwidth analyses between pi/8 and pi/16. Totally 13
reconstructions were obtained with equivalent cut-off
frequency between pi/32 and pi/8, and they are shown in
Figure 4.

After correction, visualization of the temporal and frontal
cortex and deep sub-cortical structures including putamen
and caudate body is considerably improved. To numerically
assess the improvement in homogeneity, the image intensity
before and after correction was scaled so that the mean pixel
value in the caudate nucleus was 70.0. Frontal white matter
near the caudate then had a mean pixel value of 100.0 in both
images. With the before and after images scaled to provide
the same caudate to white matter contrast, the image
correction method was found to reduce the peak to peak



variance in the brain parenchyma by a factor of 17. Also, we
created a brain parenchyma mask excluding the background,
scalp, skull and cerebrospinal fluid space to quantify the
variance change after the correction. The image with smaller
variance inside the brain parenchyma mask is considered to
be more homogeneous. The 6th wavelet packet reconstruction,
which has an equivalent cut-off frequency of 21*pi/128,
provides a more homogeneous image than the DWT optimal
level 5, which has a cut-off frequency of pi/16. This is shown
in Figure 5.

Fig. 3 Estimated sensitivity profiles of 8 levels of DWT decomposition and
reconstruction. Level 5 is the optimal estimation in that the corrected image
has minimum image variance.

Fig. 4 Eight levels of correction by Daub97 filter bank using DWT.
Reconstruction at level 5 (cut-off frequency pi/16) provides the optimal
reconstruction in terms of user-defined ROI homogeneity.

IV. CONCLUSION

In this paper, we propose an automatic method to correct
the inhomogeneity of surface coil MRI using a combined
discrete wavelet transform and wavelet packet analysis for
finer spatial resolution as we estimation the coil sensitivity
profile. The Daubechies 9/7 filter bank was found to have
good computational efficiency and approximation of coil
sensitivity map. The method uses neither prior physiological
knowledge nor knowledge of the electro-magnetic properties
or locations of the RF coil. Reconstructed images show
improved visibility, which allows region near the coils to be
viewed with the same window and level settings as regions
far from the coil. This improves visualization of the cortical
areas and deep gray structures in the basal ganglia.

Fig. 5 Thirteen inhomogeneity-corrected images by wavelet packet
estimation of coil sensitivity profile using Daub97 filter bank between DWT
level 4 (cut-off frequency pi/8) and DWT level 6 (cut-off frequency pi/32).
The 6th wavelet packet reconstruction (in solid frame; cut-off frequency
21*pi/128) provides better coil sensitivity profile estimation than the DWT
optimal level 5 (in dashed frame) in terms of smaller brain parenchyma
variance.
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